skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sieczko, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The CO2flux () from lakes to the atmosphere is a large component of the global carbon cycle and depends on the air–water CO2concentration gradient (ΔCO2) and the gas transfer velocity (k). Both ΔCO2andkcan vary on multiple timescales and understanding their contributions to is important for explaining variability in fluxes and developing optimal sampling designs. We measured and ΔCO2and derivedkfor one full ice‐free period in 18 lakes using floating chambers and estimated the contributions of ΔCO2andkto variability. Generally,kcontributed more than ΔCO2to short‐term (1–9 d) variability. With increased temporal period, the contribution ofkto variability decreased, and in some lakes resulted in ΔCO2contributing more thankto variability over the full ice‐free period. Increased contribution of ΔCO2to variability over time occurred across all lakes but was most apparent in large‐volume southern‐boreal lakes and in deeper (> 2 m) parts of lakes, whereaskwas linked to variability in shallow waters. Accordingly, knowing the variability of bothkand ΔCO2over time and space is needed for accurate modeling of from these variables. We conclude that priority in assessments should be given to direct measurements of at multiple sites when possible, or otherwise from spatially distributed measurements of ΔCO2combined withk‐models that incorporate spatial variability of lake thermal structure and meteorology. 
    more » « less